Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 220: 113470, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33940464

RESUMO

We have recently reported on the development and trypanocidal activity of a class of inhibitors of Trypanosome Alternative Oxidase (TAO) that are targeted to the mitochondrial matrix by coupling to lipophilic cations via C14 linkers to enable optimal interaction with the enzyme's active site. This strategy resulted in a much-enhanced anti-parasite effect, which we ascribed to the greater accumulation of the compound at the location of the target protein, i.e. the mitochondrion, but to date this localization has not been formally established. We therefore synthesized a series of fluorescent analogues to visualize accumulation and distribution within the cell. The fluorophore chosen, julolidine, has the remarkable extra feature of being able to function as a viscosity sensor and might thus additionally act as a probe of the cellular glycerol that is expected to be produced when TAO is inhibited. Two series of fluorescent inhibitor conjugates incorporating a cationic julolidine-based viscosity sensor were synthesized and their photophysical and biological properties were studied. These probes display a red emission, with a high signal-to-noise ratio (SNR), using both single- and two-photon excitation. Upon incubation with T. brucei and mammalian cells, the fluorescent inhibitors 1a and 2a were taken up selectively in the mitochondria as shown by live-cell imaging. Efficient partition of 1a in functional isolated (rat liver) mitochondria was estimated to 66 ± 20% of the total. The compounds inhibited recombinant TAO enzyme in the submicromolar (1a, 2c, 2d) to low nanomolar range (2a) and were effective against WT and multidrug-resistant trypanosome strains (B48, AQP1-3 KO) in the submicromolar range. Good selectivity (SI > 29) over mammalian HEK cells was observed. However, no viscosity-related shift could be detected, presumably because the glycerol was produced cytosolically, and released through aquaglyceroporins, whereas the probe was located, virtually exclusively, in the trypanosome's mitochondrion.


Assuntos
Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/farmacologia , Proteínas Mitocondriais/antagonistas & inibidores , Oxirredutases/antagonistas & inibidores , Proteínas de Plantas/antagonistas & inibidores , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Células HEK293 , Humanos , Microscopia de Fluorescência , Proteínas Mitocondriais/metabolismo , Estrutura Molecular , Imagem Óptica , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Relação Estrutura-Atividade , Trypanosoma/enzimologia , Trypanosoma brucei brucei/enzimologia
2.
J Med Chem ; 60(4): 1509-1522, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112515

RESUMO

We investigated a chemical strategy to boost the trypanocidal activity of 2,4-dihydroxybenzoic acid (2,4-DHBA)- and salicylhydroxamic acid (SHAM)-based trypanocides with triphenylphosphonium and quinolinium lipophilic cations (LC). Three series of LC conjugates were synthesized that were active in the submicromolar (5a-d and 10d-f) to low nanomolar (6a-f) range against wild-type and multidrug resistant strains of African trypanosomes (Trypanosoma brucei brucei and T. congolense). This represented an improvement in trypanocidal potency of at least 200-fold, and up to >10 000-fold, compared with that of non-LC-coupled parent compounds 2,4-DHBA and SHAM. Selectivity over human cells was >500 and reached >23 000 for 6e. Mechanistic studies showed that 6e did not inhibit the cell cycle but affected parasite respiration in a dose-dependent manner. Inhibition of trypanosome alternative oxidase and the mitochondrial membrane potential was also studied for selected compounds. We conclude that effective mitochondrial targeting greatly potentiated the activity of these series of compounds.


Assuntos
Hidroxibenzoatos/farmacologia , Salicilamidas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma congolense/efeitos dos fármacos , Linhagem Celular , Descoberta de Drogas , Humanos , Hidroxibenzoatos/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Salicilamidas/química , Tripanossomicidas/química , Trypanosoma brucei brucei/metabolismo , Trypanosoma congolense/metabolismo , Tripanossomíase Africana/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...